Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
J Biosci ; 2000 Dec; 25(4): 339-46
Article in English | IMSEAR | ID: sea-111272

ABSTRACT

Tyrosine phosphorylation events are key components of several cellular signal transduction pathways. This study describes a novel method for identification of substrates for tyrosine kinases. Co-expression of the tyrosine kinase EphB1 with the intracellular domain of guanylyl cyclase C (GCC) in Escherichia coli cells resulted in tyrosine phosphorylation of GCC, indicating that GCC is a potential substrate for tyrosine kinases. Indeed, GCC expressed in mammalian cells is tyrosine phosphorylated, suggesting that tyrosine phosphorylation may play a role in regulation of GCC signalling. This is the first demonstration of tyrosine phosphorylation of any member of the family of membrane-associated guanylyl cyclases.


Subject(s)
Animals , Blotting, Western , Cell Line , Chromatography, Thin Layer , Ephrin-B1 , Escherichia coli/enzymology , Guanylate Cyclase/metabolism , Humans , Immunoglobulin G/metabolism , Membrane Proteins/metabolism , Mice , Peptide Mapping , Phosphorylation , Plasmids/metabolism , Precipitin Tests , Protein Structure, Tertiary , Receptors, Cell Surface/metabolism , Receptors, Peptide/metabolism , Recombinant Fusion Proteins/metabolism , Signal Transduction , Tyrosine/metabolism
2.
J Biosci ; 1988 Mar; 13(1): 87-104
Article in English | IMSEAR | ID: sea-160644

ABSTRACT

Riboflavin carrier protein which is obligatorily involved in yolk deposition of the vitamin in the chicken egg, is a unique glycophosphoprotein present in both the yolk and white compartments. The yolk and egg white proteins are products of a single estrogeninducible gene expressed in the liver and the oviduct respectively of egg laying birds. Despite the fact that the carbohydrate composition of the yolk and white riboflavin carrier proteins differ presumably due to differential post-translational modification, the proteins are immunologically similar and have identical amino acid sequence (including a cluster of 8 phosphoser residues towards the C-terminus) except at the carboxy terminus where the yolk riboflavin carrier protein lacks 13 amino acids as a consequence of proteolytic cleavage during uptake by oocytes. The protein is highly conserved throughout evolution all the way to humans in terms of gross molecular characteristics such as molecular weight and isoelectric point, and in immunological properties, preferential affinity for free riboflavin and estrogen inducibility at the biosynthetic locus viz., liver. Obligatory involvement of the mammalian riboflavin carrier protein in transplacental flavin transport to subserve fetal vitamin nutrition during gestation is revealed by experiments using pregnant rodent or subhuman primate models wherein immunoneutralisation of endogenous maternal riboflavin carrier protein results in fetal wastage followed by pregnancy termination due to selective yet drastic curtailment of vitamin efflux into the fetoplacental unit. Using monoclonal antibodies to chicken riboflavin carrier protein, it could be shown that all the major epitopes of the avian riboflavin carrier protein are highly conserved throughout evolution although the relative affinities of some of the epitopes for different monoclonal antibodies have undergone progressive changes during evolution. Using these monoclonal antibodies, an attempt is being made to map the different epitopes on the riboflavin carrier protein molecule with a view to delineate the immunodominant regions of the vitamin carrier to understand its structure-immunogenicity relationship.

SELECTION OF CITATIONS
SEARCH DETAIL